Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.190
Filtrar
1.
Food Chem ; 452: 139533, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38705119

RESUMEN

Encapsulating enzymes in metal-organic frameworks is a common practice to improve enzyme stability against harsh conditions. However, the synthesis of enzyme@MOFs has been primarily limited to small-scale laboratory settings, hampering their industrial applications. Spray drying is a scalable and cost-effective technology, which has been frequently used in industry for large-scale productions. Despite these advantages, its potential for encapsulating enzymes in MOFs remains largely unexplored, due to challenges such as nozzle clogging from MOF particle formation, utilization of toxic organic solvents, controlled release of encapsulated enzymes, and high temperatures that could compromise enzyme activity. Herein, we present a novel approach for preparing phytase@MIL-88 A using solvent-free spray drying. This involves atomizing two MOF precursor solutions separately using a three-fluid nozzle, with enzyme release controlled by manipulating defects within the MOFs. The physicochemical properties of the spray dried particles are characterized using X-ray diffraction, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Leveraging the efficiency and scalability of spray drying in industrial production, this scalable encapsulation technique holds considerable promise for broad industrial applications.

2.
ACS Nano ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38742941

RESUMEN

Human vision excels in perceiving nighttime low illumination due to biological feedforward adaptation. Replicating this ability in biomimetic vision using solid-state devices has been highly sought after. However, emulating scotopic adaptation, entailing a confluence of efficient photoexcitation and dynamic carrier modulation, presents formidable challenges. Here, we demonstrate a low-power and bionic scotopic adaptation transistor by coupling a light-absorption layer and an electron-trapping layer at the bottom of the semiconducting channel, enabling simultaneous achievement of efficient generation of free photocarriers and adaptive carrier accumulation within a single device. This innovation empowers our transistor to exhibit sensitivity-potentiated characteristics after adaptation, detecting scotopic-level illumination (0.001 lx) with exceptional photosensitivity up to 103 at low voltages below 2 V. Moreover, we have successfully replicated diverse scotopic vision functions, encompassing time-dependent visual threshold enhancement, light intensity-dependent adaptation index, imaging contrast enhancement for nighttime low illumination imaging, opening an opportunity for artificial night vision.

3.
Int J Nanomedicine ; 19: 3805-3825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708177

RESUMEN

Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.


Asunto(s)
Antineoplásicos , Neoplasias , Telomerasa , Telómero , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Telómero/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Telomerasa/antagonistas & inhibidores , Animales , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Inmunoterapia/métodos , Células Madre Neoplásicas/efectos de los fármacos
4.
World J Gastrointest Surg ; 16(4): 1165-1175, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38690051

RESUMEN

BACKGROUND: Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract, often requiring intestinal resection as a common treatment. However, recurrence after surgery is common. The anastomotic configuration after bowel resection appears to be associated with the recurrence of CD. Previous studies have suggested that the Kono-S anastomosis may help to reduce the recurrence rate. However, the results remain controversial. Therefore, evidence-based evidence is needed to prove the advantages of Kono-S anastomosis. AIM: To measure the influence of anastomosis techniques on the long-term relapse rate of CD by conducting a meta-analysis. METHODS: PubMed, Scopus, and Cochrane Library were searched until October 8, 2023. Patients who underwent intestinal resection due to CD were included. The intervention measures included Kono-S anastomosis, whereas the control group received traditional anastomosis such as end-to-end, end-to-side, and side-to-side anastomosis. Only randomized clinical trials and observational studies were included. The primary outcome measures were hospital stay post-surgery, overall postoperative complication incidence, the proportion of Clavien-Dindo grade IIIa or higher, overall postoperative recurrence rate, and Rutgeerts score. RESULTS: From 2011 to 2023, six articles met the inclusion and exclusion criteria. The results indicated that Kono-S anastomosis can reduce the hospital stay post-surgery of patients with CD [MD = -0.26, 95%CI: -0.42 to -0.10, P = 0.002] than other traditional anastomosis methods. Compared to other traditional anastomosis methods, Kono-S anastomosis can significantly reduce the total recurrence rate [MD = 0.40, 95%CI: 0.17 to 0.98, P = 0.05] and postoperative Rutgeerts score [MD = -0.81, 95%CI: -0.96 to -0.66, P < 0.001] in patients with CD. However, there is no significant disparity in the overall occurrence of postoperative complications and the proportion of Clavien-Dindo ≥ IIIa. CONCLUSION: Kono-S anastomosis has the potential to expedite the recuperation of CD and diminish relapse hazards; however, additional larger trials are necessary to authenticate its effectiveness.

5.
Anal Chim Acta ; 1308: 342575, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740448

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (µPADs) offer the advantages of low cost, good sensitivity, and rapid detection, providing a strategic pathway to address large-scale disease screening in resource-limited areas. However, existing smartphone-based detection platforms usually rely on large devices or cloud servers for data transfer and processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay (c-ELISA) on µPADs can further facilitate the realization of smartphone µPADs platforms for efficient disease detection. RESULTS: This paper introduces a new deep learning-assisted offline smartphone platform for early AD screening, offering rapid disease detection in low-resource areas. The proposed platform features a simple mechanical rotating structure controlled by a smartphone, enabling fully automated c-ELISA on µPADs. Our platform successfully applied sandwich c-ELISA for detecting the ß-amyloid peptide 1-42 (Aß 1-42, a crucial AD biomarker) and demonstrated its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N = 6). Moreover, we employed the YOLOv5 deep learning model and achieved an impressive 97 % accuracy on a dataset of 1824 images, which is 10.16 % higher than the traditional method of curve-fitting results. The trained YOLOv5 model was seamlessly integrated into the smartphone using the NCNN (Tencent's Neural Network Inference Framework), enabling deep learning-assisted offline detection. A user-friendly smartphone application was developed to control the entire process, realizing a streamlined "samples in, answers out" approach. SIGNIFICANCE: This deep learning-assisted, low-cost, user-friendly, highly stable, and rapid-response automated offline smartphone-based detection platform represents a good advancement in point-of-care testing (POCT). Moreover, our platform provides a feasible approach for efficient AD detection by examining the level of Aß 1-42, particularly in areas with low resources and limited communication infrastructure.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Papel , Teléfono Inteligente , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/sangre , Humanos , Biomarcadores/sangre , Biomarcadores/análisis , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/sangre , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/análisis , Dispositivos Laboratorio en un Chip , Aprendizaje Profundo , Automatización , Técnicas Analíticas Microfluídicas/instrumentación
6.
Nat Prod Res ; : 1-7, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619012

RESUMEN

This paper reports the isolation of two undescribed phenolic glycosides (1 and 2), together with seven known compounds (3-9) from the branches of Viburnum chinshanense. The structures of undescribed compounds were elucidated by comprehensive spectroscopic methods (1D NMR, 2D NMR, and HRESIMS). The sugar units of compounds 1 and 2 were identified by acid hydrolysis and HPLC analysis of the chiral derivatives of the monosaccharides. Furthermore, the α­amylase and α-glucosidase inhibitory activities of all isolates were evaluated and compounds 1, 5, and 8 displayed potential α­amylase and α-glucosidase inhibitory activities. The molecular docking analyses of compounds 1 and 8 with the potent inhibition towards the target enzymes were also performed.

7.
Chem Bio Eng ; 1(2): 99-112, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38566967

RESUMEN

Enzymes, as highly efficient biocatalysts, excel in catalyzing diverse reactions with exceptional activity and selective properties under mild conditions. Nonetheless, their broad applications are hindered by their inherent fragility, including low thermal stability, limited pH tolerance, and sensitivity to organic solvents and denaturants. Encapsulating enzymes within metal-organic frameworks (MOFs) can protect them from denaturation in these harsh environments. However, this often leads to a compromised enzyme activity. In recent years, extensive research efforts have been dedicated to enhancing enzymatic activity within MOFs, leading to the development of new enzyme-MOF composites that not only preserve their catalytic potential but also outperform their free counterparts. This Review provides a comprehensive review on recent developments in enzyme-MOF composites with a specific emphasis on their enhanced enzymatic activity compared to free enzymes.

8.
J Ovarian Res ; 17(1): 90, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671507

RESUMEN

BACKGROUND: Polycystic Ovary Syndrome (PCOS) is a common reproductive disorder that frequently affects fertility. The TyG-BMI (Triglyceride glucose-body mass) index is a newly explored parameter that may be linked to reproductive results in individuals with PCOS. Nevertheless, its connection with outcomes in In Vitro Fertilization (IVF) procedures remains uncertain. METHODS: This study included a total of 966 females who underwent IVF treatments for PCOS. At the baseline, the participants were categorized into four groups according to the quartiles of TyG-BMI measured prior to oocyte retrieval. Subsequently, the study compared the differences in clinical and laboratory outcomes among these four groups. RESULTS: Patients in higher TyG-BMI quartiles exhibited a decreased number of retrieved oocytes, 2PN embryos, and available/high-quality embryos (P < 0.05 for Q1-Q4). Additionally, the multivariable regression analysis revealed that individuals in the top quartile of TyG-BMI had a lower count of accessible embryos (ß = -0.224, P = 0.257) and a decreased number of high-quality embryos (ß = -0.352, P = 0.028) in comparison to those in the lowest quartile. Nevertheless, there were no notable variances detected in the rates of pregnancy or live births among these quartiles. Furthermore, a linear correlation was noted between the TyG-BMI index and the quantity of accessible embryos (P-non-linear = 0.6, P-overall < 0.001), along with high-quality embryos (P-nonlinear = 0.026, P-overall = 0.006). In contrast, there was no notable linear correlation found between the TyG-BMI index and the available embryo rate (P-nonlinear = 0.60, P-overall = 0.8). CONCLUSIONS: The results of this research emphasize the notable correlation between TyG-BMI and IVF results in females diagnosed with PCOS. The interplay of insulin resistance and disorders of lipid metabolism may indeed play a pivotal role in influencing the assisted reproductive outcomes of patients with PCOS. Considering these findings, TyG-BMI proves to be a valuable indicator for exploring this potential association.


Asunto(s)
Índice de Masa Corporal , Fertilización In Vitro , Síndrome del Ovario Poliquístico , Triglicéridos , Humanos , Síndrome del Ovario Poliquístico/sangre , Femenino , Adulto , Triglicéridos/sangre , Embarazo , Estudios de Cohortes , Glucemia/metabolismo , Glucemia/análisis , Índice de Embarazo
9.
Eur J Med Res ; 29(1): 218, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38576041

RESUMEN

BACKGROUND: The objective of this investigation is to analyze the levels and clinical relevance of serum PYCARD (Pyrin and CARD domain-containing protein, commonly known as ASC-apoptosis-associated speck-like protein containing a caspase activation and recruitment domain), interleukin-38 (IL-38), and interleukin-6 (IL-6) in individuals afflicted with rheumatoid arthritis (RA). METHODS: Our study comprised 88 individuals diagnosed with RA who sought medical attention at the Affiliated Hospital of Chengde Medical University during the period spanning November 2021 to June 2023, constituting the test group. Additionally, a control group of 88 individuals who underwent health assessments at the same hospital during the aforementioned timeframe was included for comparative purposes. The study involved the assessment of IL-38, IL-6, PYCARD, anti-cyclic citrullinated peptide antibody (anti-CCP), and erythrocyte sedimentation rate (ESR) levels in both groups. The research aimed to explore the correlations and diagnostic efficacy of these markers, employing pertinent statistical analyses for comprehensive evaluation. RESULTS: The test group had higher expression levels of PYCARD, IL-6, and IL-38 than the control group (P < 0.05). Based on the correlation analysis, there was a strong relationship between PYCARD and IL-38 (P < 0.01). The receiver operating characteristic (ROC) curve analysis revealed area under the curve (AUC) values of 0.97, 0.96, and 0.96 when using combinations of PYCARD and anti-CCP, IL-38 and anti-CCP, and IL-6 and anti-CCP for predicting RA, respectively. Importantly, all three of these pairs demonstrated superior AUC values compared to PYCARD, IL-38, IL-6, ESR, or anti-CCP used as standalone diagnostic indicators. CONCLUSION: PYCARD, IL-6, and IL-38 exhibit promising potential as novel diagnostic markers and may constitute valuable tools for supporting the diagnosis of RA.


Asunto(s)
Anticuerpos Antiproteína Citrulinada , Artritis Reumatoide , Humanos , Interleucina-6 , Artritis Reumatoide/diagnóstico , Autoanticuerpos , Curva ROC , Péptidos Cíclicos , Biomarcadores , Proteínas Adaptadoras de Señalización CARD/genética , Interleucinas
10.
Rom J Morphol Embryol ; 65(1): 107-112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527990

RESUMEN

Pulmonary nodules are a common complication in solid organ transplant recipients, and may have various underlying causes, with Epstein-Barr virus-associated smooth muscle tumor (EBV-SMT) being one of them. Given the rarity of this entity, we describe the diagnosis and therapeutic interventions for post-transplant EBV-SMT in two individuals. Both cases involved female patients who were diagnosed with multiple pulmonary nodules 60 months and 116 months, respectively, after receiving living-related kidney transplantation. Pathological examination revealed a spindle cell tumor, with immunophenotype and EBV in situ hybridization supporting the diagnosis of EBV-SMT. After diagnosis, these two patients underwent intervention by decreasing their intake of immunosuppressants. As of the latest follow-up, the patients' lesion size remained stable, and their overall condition was favorable. We also reviewed literature about the morphological and molecular pathological features of EBV-SMT and highlighted the diagnosis and differential diagnosis of pulmonary spindle cell lesions especially in the setting of immunosuppression.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trasplante de Riñón , Tumor de Músculo Liso , Femenino , Humanos , Diagnóstico Diferencial , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/patología , Herpesvirus Humano 4/genética , Trasplante de Riñón/efectos adversos , Tumor de Músculo Liso/diagnóstico , Tumor de Músculo Liso/etiología , Tumor de Músculo Liso/patología
11.
Food Chem ; 448: 138994, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522301

RESUMEN

Integrating a pre-enrichment step into electrochemical detection methodologies has traditionally been employed to enhance the performance of heavy metal detection. However, this augmentation also introduces a degree of intricacy into the sensing process and increases energy consumption. In this work, Mo-doped WO3 is grown in situ on carbon cloth by one-step electrodeposition. The electrode detect multiple heavy metal ions simultaneously in the range of 0.1-100.0 µM with LODs ranging from 11.2 to 17.1 nM. The electrode successfully detected heavy metal ions in diverse food samples. This pioneering detection strategy realized the direct and simultaneous detection of multiple heavy metal ions by utilizing the valence property of WO3 and oxygen vacancies generated by molybdenum doping. The Mo-WO3/CC pre-enrichment-free detection electrode boasts straightforward preparation, a streamlined detection procedure, swift response kinetics, and superior performance relative to previously reported electrodes, which makes it possible to develop a portable heavy metal ion detection device.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Contaminación de Alimentos , Metales Pesados , Molibdeno , Tungsteno , Metales Pesados/análisis , Contaminación de Alimentos/análisis , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Tungsteno/química , Molibdeno/química , Óxidos/química , Límite de Detección , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos
12.
Fa Yi Xue Za Zhi ; 40(1): 1-14, 2024 Feb 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500455

RESUMEN

OBJECTIVES: To analyze the literature on artificial intelligence in forensic research from 2012 to 2022 in the Web of Science Core Collection Database, to explore research hotspots and developmental trends. METHODS: A total of 736 articles on artificial intelligence in forensic medicine in the Web of Science Core Collection Database from 2012 to 2022 were visualized and analyzed through the literature measuring tool CiteSpace. The authors, institution, country (region), title, journal, keywords, cited references and other information of relevant literatures were analyzed. RESULTS: A total of 736 articles published in 220 journals by 355 authors from 289 institutions in 69 countries (regions) were identified, with the number of articles published showing an increasing trend year by year. Among them, the United States had the highest number of publications and China ranked the second. Academy of Forensic Science had the highest number of publications among the institutions. Forensic Science International, Journal of Forensic Sciences, International Journal of Legal Medicine ranked high in publication and citation frequency. Through the analysis of keywords, it was found that the research hotspots of artificial intelligence in the forensic field mainly focused on the use of artificial intelligence technology for sex and age estimation, cause of death analysis, postmortem interval estimation, individual identification and so on. CONCLUSIONS: It is necessary to pay attention to international and institutional cooperation and to strengthen the cross-disciplinary research. Exploring the combination of advanced artificial intelligence technologies with forensic research will be a hotspot and direction for future research.


Asunto(s)
Inteligencia Artificial , Medicina Legal , Autopsia , China , Ciencias Forenses
13.
Pediatr Radiol ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538753

RESUMEN

BACKGROUND: An increasing rate of encephalopathy associated with coronavirus disease 2019 (COVID-19) has been observed among children. However, the literature on neuroimaging data in children with COVID-19 is limited. OBJECTIVE: To analyze brain magnetic resonance imaging (MRI) of pediatric COVID-19 patients with neurological complications. MATERIALS AND METHODS: This multicenter retrospective observational study analyzed clinical (n=102, 100%) and neuroimaging (n=93, 91.2%) data of 102 children with COVID-19 infections and comorbid acute neurological symptoms. These children were hospitalized at five pediatric intensive care units (PICUs) in China between December 1, 2022, and January 31, 2023. RESULTS: All patients were positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as detected via reverse transcriptase polymerase chain reaction. About 75.7% of the children were infected with the Omicron variant BF.7 strain. Brain MRI was performed 1-12 days following the onset of neurological symptoms, which revealed acute neuroimaging findings in 74.2% (69/93) of cases, including evidence of acute necrotizing encephalopathy (33/69, 47.8%), encephalitis (31/69, 44.9%), reversible splenial lesion syndrome (3/69, 4.3%), reversible posterior leukoencephalopathy (1/69, 1.4%), and hippocampal atrophy (1/69, 1.4%). CONCLUSIONS: Overall, these data highlighted five neuroimaging patterns associated with the outbreak of the SARS-CoV-2 Omicron variant, with acute necrotizing encephalopathy being the most common of these neuroimaging findings. Rarely, the brain MRI of these pediatric COVID-19 patients also demonstrate hippocampal atrophy.

14.
J Multidiscip Healthc ; 17: 1343-1362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38545434

RESUMEN

Objective: The objective of this study was to search for, evaluate, and summarize data related to a faster postoperative recovery in patients with colorectal cancer (CRC) based on literature from China as well as internationally. This will serve as an evidence-based foundation for the clinical implementation of enhanced postoperative recovery of gastrointestinal function in patients with CRC. Methods: Based on the hierarchical "6S" evidence model, we conducted a systematic search of computerized decision-support systems, guideline websites, as well as domestic and international databases for evidence, guidelines, expert consensus statements, clinical decision-making, best practices, evidence summaries, and systematic reviews of interventions focusing on accelerating gastrointestinal function rehabilitation after CRC surgery. The time limit for the search was from the date of creation of the database to January 2023. Two researchers evaluated the quality of the literature that was included, and we extracted data and summarized the evidence from those publications that fulfilled the quality criteria. Results: The review included a total of 21 publications, comprising 6 guidelines, 6 systematic reviews, 3 expert consensus statements, 4 randomized controlled trials, and 2 evidence summaries. We summarized 51 best evidence findings across five areas: organizational management, preoperative risk assessment, education, intraoperative monitoring, and postoperative management. Conclusion: There is a wide variety and wealth of information available on interventions to promote enhanced postoperative recovery of gastrointestinal function in patients with CRC. The use of evidence is discussed, keeping in mind the practical situation in China.

15.
ACS Nano ; 18(12): 8571-8599, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483840

RESUMEN

T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.


Asunto(s)
Células Presentadoras de Antígenos , Activación de Linfocitos , Humanos , Inmunoterapia/métodos , Linfocitos T , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunoterapia Adoptiva
16.
Front Oncol ; 14: 1340872, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463235

RESUMEN

Objective: At present, the structure of knowledge in the field of childhood thyroid cancer is not clear enough, and scholars lack a sufficient understanding of the developing trends in this field, which has led to a shortage of forward-looking outputs. The purpose of this research is to help scholars construct a complete knowledge framework and identify current challenges, opportunities, and development trends. Methods: We searched the literature in the Web of Science Core Collection database on August 7, 2023 and extracted key information from the top 100 most cited articles, such as the countries, institutions, authors, themes, and keywords. We used bibliometric tools such as bibliometrix, VOSviewer, and CiteSpace for a visualization analysis and Excel for statistical descriptions. Results: The top 100 most cited articles fluctuated over time, and the research was concentrated in European countries, the United States, and Japan, among which scientific research institutions and scholars from the United States made outstanding contributions. Keyword analysis revealed that research has shifted from simple treatment methods for pediatric thyroid cancer (total thyroidectomy) and inducing factors (the Chernobyl power station accident) to the clinical applications of genetic mutations (such as the BRAF and RET genes) and larger-scale genetic changes (mutation studies of the DICER1 gene). The thematic strategy analysis showed an increasing trend towards the popularity of fusion oncogenes, while the popularity of research on traditional treatments and diagnostics has gradually declined. Conclusion: Extensive research has been conducted on the basic problems of pediatric thyroid cancer, and there has been significant outputs in the follow-up and cohort analysis of conventional diagnostic and treatment methods. However, these methods still have certain limitations. Therefore, scholars should focus on exploring fusion genes, the clinical applications of molecular targets, and novel treatment methods. This study provides a strong reference for scholars in this field.

17.
Am J Transl Res ; 16(1): 272-284, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322575

RESUMEN

Evidence suggests that damage to the ribbon synapses (RS) may be the main cause of auditory dysfunction in noise-induced hearing loss (NIHL). Oxidative stress is implicated in the pathophysiology of synaptic damage. However, the relationship between oxidative stress and RS damage in NIHL remains unclear. To investigate the hypothesis that noise-induced oxidative stress is a key factor in synaptic damage within the inner ear, we conducted a study using mice subjected to single or repeated noise exposure (NE). We assessed auditory function using auditory brainstem response (ABR) test and examined cochlear morphology by immunofluorescence staining. The results showed that mice that experienced a single NE exhibited a threshold shift and recovered within two weeks. The ABR wave I latencies were prolonged, and the amplitudes decreased, suggesting RS dysfunction. These changes were also demonstrated by the loss of RS as evidenced by immunofluorescence staining. However, we observed threshold shifts that did not return to baseline levels following secondary NE. Additionally, ABR wave I latencies and amplitudes exhibited notable changes. Immunofluorescence staining indicated not only severe damage to RS but also loss of outer hair cells. We also noted decreased T-AOC, ATP, and mitochondrial membrane potential levels, alongside increased hydrogen peroxide concentrations post-NE. Furthermore, the expression levels of 4-HNE and 8-OHdG in the cochlea were notably elevated. Collectively, our findings suggest that the production of reactive oxygen species leads to oxidative damage in the cochlea. This mitochondrial dysfunction consequently contributes to the loss of RS, precipitating an early onset of NIHL.

18.
JMIR Form Res ; 8: e53654, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363597

RESUMEN

BACKGROUND: The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) in China presents a significant public health concern. Traditional ultrasound, commonly used for fatty liver screening, often lacks the ability to accurately quantify steatosis, leading to insufficient follow-up for patients with moderate-to-severe steatosis. Transient elastography (TE) provides a more quantitative diagnosis of steatosis and fibrosis, closely aligning with biopsy results. Moreover, machine learning (ML) technology holds promise for developing more precise diagnostic models for NAFLD using a variety of laboratory indicators. OBJECTIVE: This study aims to develop a novel ML-based diagnostic model leveraging TE results for staging hepatic steatosis. The objective was to streamline the model's input features, creating a cost-effective and user-friendly tool to distinguish patients with NAFLD requiring follow-up. This innovative approach merges TE and ML to enhance diagnostic accuracy and efficiency in NAFLD assessment. METHODS: The study involved a comprehensive analysis of health examination records from Suzhou Municipal Hospital, spanning from March to May 2023. Patient data and questionnaire responses were meticulously inputted into Microsoft Excel 2019, followed by thorough data cleaning and model development using Python 3.7, with libraries scikit-learn and numpy to ensure data accuracy. A cohort comprising 978 residents with complete medical records and TE results was included for analysis. Various classification models, including logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), light gradient boosting machine (LightGBM), and extreme gradient boosting (XGBoost), were constructed and evaluated based on the area under the receiver operating characteristic curve (AUROC). RESULTS: Among the 916 patients included in the study, 273 were diagnosed with moderate-to-severe NAFLD. The concordance rate between traditional ultrasound and TE for detecting moderate-to-severe NAFLD was 84.6% (231/273). The AUROC values for the RF, LightGBM, XGBoost, SVM, KNN, and LR models were 0.91, 0.86, 0.83, 0.88, 0.77, and 0.81, respectively. These models achieved accuracy rates of 84%, 81%, 78%, 81%, 76%, and 77%, respectively. Notably, the RF model exhibited the best performance. A simplified RF model was developed with an AUROC of 0.88, featuring 62% sensitivity and 90% specificity. This simplified model used 6 key features: waist circumference, BMI, fasting plasma glucose, uric acid, total bilirubin, and high-sensitivity C-reactive protein. This approach offers a cost-effective and user-friendly tool while streamlining feature acquisition for training purposes. CONCLUSIONS: The study introduces a groundbreaking, cost-effective ML algorithm that leverages health examination data for identifying moderate-to-severe NAFLD. This model has the potential to significantly impact public health by enabling targeted investigations and interventions for NAFLD. By integrating TE and ML technologies, the study showcases innovative approaches to advancing NAFLD diagnostics.

19.
Sensors (Basel) ; 24(3)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38339633

RESUMEN

As a common water pollutant, ammonia nitrogen poses a serious risk to human health and the ecological environment. Therefore, it is important to develop a simple and efficient sensing scheme to achieve accurate detection of ammonia nitrogen. Here, we report a simple fabrication electrode for the electrochemical synthesis of platinum-zinc alloy nanoflowers (PtZn NFs) on the surface of carbon cloth. The obtained PtZn NFs/CC electrode was applied to the electrochemical detection of ammonia nitrogen by differential pulse voltammetry (DPV). The enhanced electrocatalytic activity of PtZn NFs and the larger electrochemical active area of the self-supported PtZn NFs/CC electrode are conducive to improving the ammonia nitrogen detection performance of the sensitive electrode. Under optimized conditions, the PtZn NFs/CC electrode exhibits excellent electrochemical performance with a wide linear range from 1 to 1000 µM, a sensitivity of 21.5 µA µM-1 (from 1 µM to 100 µM) and a lower detection limit of 27.81 nM, respectively. PtZn NFs/CC electrodes show excellent stability and anti-interference. In addition, the fabricated electrochemical sensor can be used to detect ammonia nitrogen in tap water and lake water samples.

20.
Mol Ther Nucleic Acids ; 35(1): 102114, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38314096

RESUMEN

tRNA-derived small RNAs (tsRNAs) constitute a subgroup of small noncoding RNAs (ncRNAs) originating from tRNA molecules. Their rich content, evolutionary conservatism, high stability, and widespread existence makes them significant in disease research. These characteristics have positioned tsRNAs as key players in various physiological and pathological processes. tsRNA actively participates in regulating many cellular processes, such as cell death, proliferation, and metabolism. tsRNAs could be promising diagnostic markers for cardiovascular diseases (CVDs). tsRNAs have been identified in serums, suggesting their utility as early indicators for the diagnosis of CVDs. Moreover, the regulatory roles of tsRNAs in CVDs make them promising targets for therapeutic intervention. This review provides a succinct overview of the characteristics, classification, and regulatory functions of tsRNAs in the context of CVDs. By shedding light on the intricate roles of tsRNAs, this knowledge could pave the way for the development of innovative diagnostic tools and therapeutic strategies for CVDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...